Big Data – Managing Location in a Smart City

Geospatial World Forum 2014

Hans Viehmann Product Manger EMEA

Location Information in Smart Cities

Everyone uses and shares Location Data

Where is ... How do I get to ...

Find me the nearest ... When is the bus coming?

I have checked in at ... on Foursquare.

Today I'm at GWF 2014

.. N 53° 35.469, E 10° 01.261 N 53° 35.473, E 10° 01.263 N 53° 35.477

ORACLE

Characteristics of Incoming Data

Specific to location information

- Continuous streams of sensor data
 - Large number of sensors, massive amounts of data
 - Location transmitted explicitly GPS, phone network, ...
- Implicit location information
 - Address: Needs to be interpreted
 - Unstructured information: Requires semantic analysis
- Needs to be analyzed for proximity, spatial interaction
- Needs to be evaluated in context
 - Environment, Road network, Public transport routes

Manage incoming location data

Cascading architecture: devices \rightarrow gateways \rightarrow servers

Using Location Data in Context

Smart City needs to provide Geospatial information

- Conventionally using location data on a map
- Two-dimensional data usually not sufficient, need 3D
 - Location within buildings shopping malls, airports, ...
 - Lots of use cases for city modelling (see next slide)
- Value-add through integration with other data
 - spatial or non-spatial information combined in open platform
 - use of standards (ISO, OGC) is prerequisite
- 3D data acquisition is Big Data topic in itself
 - but well-understood and routinely possible

Farma	cia Godia 🝙 de lanca esanchez
Servei Territorial de Trànsit de Barcelona	Sala Vivaldi •
8 8	8
Pira de Barcelona	

Example: City of Berlin – 3D City Model Implemented by TU Berlin

berlin

- 550000 buildings, reconstructed from 2D cadastre and LIDAR data
- Textures extracted from oblique aerial photography
- Combined with various data sets
- Based on CityGML standard

ORACLE

8 Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Images courtesy of: TU Berlin, Institute for Geodesy and Geoinformation

Smart Cities need a Spatial Data Infrastructure Requirements Database functionality such as

ORACLE

SDIs are ideal for a Cloud Infrastructure

SDI is fundamental part of Smart City Platform City Citizen **Service Empowerment** Collaboration **Social Media** City **Business** Operation **Productivity** Harmonization Entrepreneurs City **Sustainable** Infrastructure City Modernization Sensors ORACLE

SDI is fundamental part of Smart City Platform

ORACLE

Hardware and Software

ORACLE

Engineered to Work Together

ORACLE®